How to Prepare a Learnware for Large Language Models
The learnware for large language models (LLMs) builds upon existing learnware standards while incorporating extensions tailored to the characteristics of LLMs. This document provides a detailed guide to the composition, implementation, and considerations for creating LLM learnwares.
Before proceeding, please read How to Prepare a Learnware? to familiarize yourself with the general learnware preparation process and requirements.
Basic Components of a Learnware
An LLM learnware is a zip
file that must contain the following:
learnware.yaml
: The configuration file describing the metadata of the learnware.__init__.py
: The core functionality implementation, including model loading and inference interfaces.- The statistical specification files: The filenames are customizable and recorded in
learnware.yaml
. environment.yaml
orrequirements.txt
: Specifies the runtime dependencies of the model.weights_file_path/
: A directory containing model weights and configuration files. For base models and fully fine-tuned models, this directory contains the complete model weights and configuration files. For parameter-efficient fine-tuning (PEFT) models, it contains the weights and configuration files for the fine-tuned parameters.
The weights_file_path/
directory typically includes the following files, which ensure accurate model loading and execution:
For base models and fully fine-tuned models:
config.json
generation_config.json
model.safetensors
tokenizer_config.json
tokenizer.json
For parameter-efficient fine-tuning models:
adapter_config.json
adapter_model.safetensors
tokenizer_config.json
tokenizer.json
The next sections detail the content and implementation of these files.
Model Invocation File __init__.py
The core functionality of the learnware is implemented in the __init__.py
file. Below is a reference template for base models and fully fine-tuned models. The default directory for storing model weights and configuration files is weights
. To facilitate the evaluation of the general capabilities of LLMs, the __init__.py
file must provide a get_model
interface that returns the instantiated model.
import os
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from learnware.model import BaseModel
class MyModel(BaseModel):
def __init__(self):
super(MyModel, self).__init__(input_shape=None, output_shape=None)
# Get the path to model weights and configuration files
dir_path = os.path.dirname(os.path.abspath(__file__))
model_path = os.path.join(dir_path, "weights")
# Load the model and tokenizer
self.model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", torch_dtype=torch.bfloat16)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
# Configure the tokenizer
self.tokenizer.pad_token = self.tokenizer.eos_token
self.max_length = 1024
def fit(self, X: np.ndarray, y: np.ndarray):
pass
def predict(self, X):
"""
Generates predictions based on input text.
Args:
X (list[str]): List of input texts.
Returns:
list[str]: Generated predictions.
"""
inputs = self.tokenizer(X, padding=True, truncation=True, return_tensors="pt").to(self.model.device)
outputs = self.model.generate(
inputs["input_ids"],
max_length=self.max_length,
num_return_sequences=1,
do_sample=True,
temperature=0.7
)
return [self.tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
def finetune(self, X: np.ndarray, y: np.ndarray):
pass
def get_model(self):
"""
Returns the model instance.
Returns:
torch.nn.Module: Model instance.
"""
return self.model
import os
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from learnware.model import BaseModel
class MyModel(BaseModel):
def __init__(self):
super(MyModel, self).__init__(input_shape=None, output_shape=None)
# Get the path to model weights and configuration files
dir_path = os.path.dirname(os.path.abspath(__file__))
model_path = os.path.join(dir_path, "weights")
# Load the model and tokenizer
self.model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", torch_dtype=torch.bfloat16)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
# Configure the tokenizer
self.tokenizer.pad_token = self.tokenizer.eos_token
self.max_length = 1024
def fit(self, X: np.ndarray, y: np.ndarray):
pass
def predict(self, X):
"""
Generates predictions based on input text.
Args:
X (list[str]): List of input texts.
Returns:
list[str]: Generated predictions.
"""
inputs = self.tokenizer(X, padding=True, truncation=True, return_tensors="pt").to(self.model.device)
outputs = self.model.generate(
inputs["input_ids"],
max_length=self.max_length,
num_return_sequences=1,
do_sample=True,
temperature=0.7
)
return [self.tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
def finetune(self, X: np.ndarray, y: np.ndarray):
pass
def get_model(self):
"""
Returns the model instance.
Returns:
torch.nn.Module: Model instance.
"""
return self.model
Below is a reference template for parameter-efficient fine-tuning learnware. The get_pretrained_path
function returns the local path to the base model weights and configuration files based on the specified learnware ID in Beimingwu.
import os
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from peft import get_peft_model, LoraConfig, TaskType
from learnware.model import BaseModel
from learnware.client import LearnwareClient
class MyModel(BaseModel):
def __init__(self):
super(MyModel, self).__init__(input_shape=None, output_shape=None)
dir_path = os.path.dirname(os.path.abspath(__file__))
adapter_path = os.path.join(dir_path, "adapter")
# Get the path to the base model weights
client = LearnwareClient()
base_model_path = client.get_pretrained_path("Base Model ID")
# Load the base model
base_model = AutoModelForCausalLM.from_pretrained(base_model_path, device_map="auto", torch_dtype=torch.bfloat16)
# Load the adapter model
peft_config = LoraConfig.from_pretrained(adapter_path)
self.model = get_peft_model(base_model, peft_config)
self.model.load_adapter(adapter_path, adapter_name="lora")
# Configure the tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(base_model_path)
self.tokenizer.pad_token = self.tokenizer.eos_token
self.max_length = 1024
def fit(self, X: np.ndarray, y: np.ndarray):
pass
def predict(self, X):
inputs = self.tokenizer(X, padding=True, truncation=True, return_tensors="pt").to(self.model.device)
outputs = self.model.generate(
inputs["input_ids"],
max_length=self.max_length,
num_return_sequences=1,
do_sample=True,
temperature=0.7
)
return [self.tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
def finetune(self, X: np.ndarray, y: np.ndarray):
pass
def get_model(self):
return self.model
import os
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from peft import get_peft_model, LoraConfig, TaskType
from learnware.model import BaseModel
from learnware.client import LearnwareClient
class MyModel(BaseModel):
def __init__(self):
super(MyModel, self).__init__(input_shape=None, output_shape=None)
dir_path = os.path.dirname(os.path.abspath(__file__))
adapter_path = os.path.join(dir_path, "adapter")
# Get the path to the base model weights
client = LearnwareClient()
base_model_path = client.get_pretrained_path("Base Model ID")
# Load the base model
base_model = AutoModelForCausalLM.from_pretrained(base_model_path, device_map="auto", torch_dtype=torch.bfloat16)
# Load the adapter model
peft_config = LoraConfig.from_pretrained(adapter_path)
self.model = get_peft_model(base_model, peft_config)
self.model.load_adapter(adapter_path, adapter_name="lora")
# Configure the tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(base_model_path)
self.tokenizer.pad_token = self.tokenizer.eos_token
self.max_length = 1024
def fit(self, X: np.ndarray, y: np.ndarray):
pass
def predict(self, X):
inputs = self.tokenizer(X, padding=True, truncation=True, return_tensors="pt").to(self.model.device)
outputs = self.model.generate(
inputs["input_ids"],
max_length=self.max_length,
num_return_sequences=1,
do_sample=True,
temperature=0.7
)
return [self.tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
def finetune(self, X: np.ndarray, y: np.ndarray):
pass
def get_model(self):
return self.model
You can implement the interfaces in the MyModel
class according to the specific needs of your model. In addition, we recommend that you instantiate the MyModel
class after completing the __init__.py
file and test the behavior of the interfaces to ensure that they function and behave as expected.
Learnware Statistical Specifications
For base model learnware, you do not need to provide a statistical specification. The system will automatically generate a general capability specification and store it in the package. For fully fine-tuned and parameter-efficient fine-tuned learnwares, you need to provide two types of specifications: Text RKME Specification and Generative Model Specification.
Examples:
- Text RKME Specification
from learnware.specification import generate_stat_spec
spec1 = generate_stat_spec(type="text", X=train_x)
spec1.save("rkme.json")
from learnware.specification import generate_stat_spec
spec1 = generate_stat_spec(type="text", X=train_x)
spec1.save("rkme.json")
- Generative Model Specification
from learnware.specification import generate_generative_model_spec
# you can provide `X` as `List[str]` type:
spec = generate_generative_model_spec(X=X)
# or you can provide `dataset` as `datasets.Dataset` type, where `dataset_text_field` is the name of the dataset text field:
spec = generate_generative_model_spec(dataset=train_dataset, dataset_text_field="text")
spec.save("generative.pth")
from learnware.specification import generate_generative_model_spec
# you can provide `X` as `List[str]` type:
spec = generate_generative_model_spec(X=X)
# or you can provide `dataset` as `datasets.Dataset` type, where `dataset_text_field` is the name of the dataset text field:
spec = generate_generative_model_spec(dataset=train_dataset, dataset_text_field="text")
spec.save("generative.pth")
Learnware Configuration File (learnware.yaml
)
In addition to standard fields, LLM learnwares require the following additional fields:
weights_file_path
: The relative path to model weights and configuration files, enabling theget_pretrained_path
function to correctly locate the files.required_learnware_ids
: IDs of other learnwares that the model depends on, ensuring the proper downloading and loading of base or fine-tuned models.
Example learnware.yaml
:
model:
class_name: MyModel
weights_file_path: weights # New field: Relative path to model weights
required_learnware_ids: # New field: IDs of dependent learnware
- base_model_id
kwargs: {}
stat_specifications:
- module_path: learnware.specification
class_name: RKMETextSpecification
file_name: rkme.json
kwargs: {}
- module_path: learnware.specification
class_name: GenerativeModelSpecification
file_name: generative.pth
kwargs: {}
model:
class_name: MyModel
weights_file_path: weights # New field: Relative path to model weights
required_learnware_ids: # New field: IDs of dependent learnware
- base_model_id
kwargs: {}
stat_specifications:
- module_path: learnware.specification
class_name: RKMETextSpecification
file_name: rkme.json
kwargs: {}
- module_path: learnware.specification
class_name: GenerativeModelSpecification
file_name: generative.pth
kwargs: {}
Model Runtime Dependencies
To ensure that the uploaded learnware is usable by others, you must explicitly specify the model’s runtime dependencies in the zip
file. These requirements are consistent with those outlined in How to Prepare a Learnware?.